like the simple iodide in the 600-4000-cm⁻¹ region, except that the peaks were broad and the NH vibrations unresolved, with $v_{\rm NH}$ broad and centered about 3140 while $\delta_{\rm NH}$ was broad and centered about 1575 cm⁻¹ (KCl pellet).

The stability of I_3^- is established;¹⁴ IBr₂⁻ and ICl₂⁻ are relatively stable,²² but Cl₃⁻ has been reported to be thermodynamcally unstable²³ although it was prepared²⁴ as early as 1923 and studied since.^{14,17,18,25} It is interesting to note that the present work provided a trichloride, though not very stable, with a tripositive

(22) J. H. Faull, Jr., J. Am. Chem. Soc., 56, 522 (1934).

- (23) R. L. Scott, *ibid.*, 75, 1550 (1953).
- (24) F. D. Chattaway and G. Hoyle, J. Chem. Soc., 123, 654 (1923).
- (25) G. C. Pimentel, J. Chem. Phys., 19, 446 (1951).

ion while the other known cases involve large monovalent ions, except in solution studies. Also interesting is the observation that I₂ and Br₂ react no further with $[Os(en)_3]I_3 \cdot 2H_2O$ than the reaction with the anion to form trihalides. Chlorine first forms the trihalide, and, when concentrated chlorine is used or a chlorinated compound is exposed to the air, attack on the ligand and/or oxidation of the central metal ion begins.

Acknowledgments. This work was supported by the Robert A. Welch Foundation and the U. S. Atomic Energy Commission. The initial observations on the nature of the reactions described in this paper were recorded in this laboratory by Dr. E. R. Birnbaum.

The Reactions of Isothiocyanatobis(ethylenediamine)cobalt(III) Complexes with Chromium(II) and the Linkage Isomerization of the Monothiocyanate Complex of Chromium(III)¹

Albert Haim² and Norman Sutin

Contribution from the Chemistry Department, Brookhaven National Laboratory, Upton, New York 11973. Received September 22, 1965

Abstract: The rates of reaction of chromium(II) with various *cis*- and *trans*-Co(en)₂(NCS)X^{*+} complexes (where $X = H_2O$, NH₃, Cl⁻, and SCN⁻) have been measured at 25.0° and ionic strength 1.0 *M*. The chromium(II) attacks both the remote and the adjacent positions of the bound thiocyanate. Remote attack produces CrSCN²⁺ while adjacent attack yields CrNCS²⁺. The chromium(II)-catalyzed isomerization, the spontaneous isomerization, and the aquation of CrSCN²⁺ were also studied. The mechanisms of these reactions are discussed.

I thas long been believed that the transfer of an unsymmetrical bridging group in an inner-sphere, electrontransfer reaction would, under certain circumstances, yield an unstable product.^{3,4} Intermediates produced in this manner have recently been detected. The reactions of $Co(NH_3)_5NO_2^{2+}$ and $Co(NH_3)_5CN^{2+}$ with $Co(CN)_5^{3-}$ produce the unstable species $Co(CN)_5^{-}ONO^{3-}$ and $Co(CN)_5NC^{3-}$, respectively,⁵ while the reaction of $Co(NH_3)_5CN^{2+}$ with chromium(II) produces $CrNC^{2+.6}$ We have found that the sulfur-bonded chromium(III) complex $CrSCN^{2+}$ is produced in the reaction of chromium(II) with $FeNCS^{2+.7}$ This complex reacts with chromium(II) to form the stable nitrogen-bonded isomer $CrNCS^{2+}$

$$\operatorname{CrSCN}^{2+} + \operatorname{Cr}^{2+} \xrightarrow{\kappa_{\circ}} \operatorname{Cr}^{2+} + \operatorname{CrNCS}^{2+}$$
(1)

with a rate constant of 42 $M^{-1} \sec^{-1}$ in 1 M perchloric acid at 25.0°. In the absence of chromium(II), CrSCN²⁺ undergoes aquation and isomerization. We wish to report here that CrSCN²⁺ is also produced in the reaction of chromium(II) with *cis*- and *trans*-Co-(en)₂OH₂(NCS)²⁺ and to describe some additional properties of CrSCN²⁺.

Experimental Section

Materials. Iron(III) perchlorate was purified by recrystallization from perchloric acid. A stock solution approximately 0.5 Min iron(III) and 1.5 M in perchloric acid was prepared from the recrystallized iron(III) perchlorate. The concentration of the iron(III) in the stock solution was determined by reduction of the iron(III) with a Jones reductor and titration of the iron(II) produced with standard cerium(IV) sulfate using ferroin as indicator. The perchloric acid concentration of the stock solution was determined by precipitating iron(III) hydroxide with excess standard alkali and back-titrating with standard acid to a phenolphthalein end point.

Stock solutions approximately 10^{-1} and 10^{-2} M in chromium(II) and 1 M in perchloric acid were prepared by the reduction of chromium(III) perchlorate solutions with amalgamated zinc. The chromium(II) concentration was determined by titration with a standard iron(III) solution containing a two- to threefold excess of thiocyanate. The disappearance of the red iron(III) thiocyanate complexes was taken as the end point. The perchloric acid concentration of the chromium(II) solution was determined by oxidiz-

⁽¹⁾ Research performed under the auspices of the U. S. Atomic Energy Commission.

⁽²⁾ Visiting Chemist from the Chemistry Department, Pennsylvania State University.

⁽³⁾ R. L. Carlin and J. O. Edwards, J. Inorg. Nucl. Chem., 6, 217 (1958).

⁽⁴⁾ D. L. Ball and E. L. King, J. Am. Chem. Soc., 80, 1091 (1958).

⁽⁵⁾ J. Halpern and S. Nakamura, *ibid.*, 87, 3002 (1965).

⁽⁶⁾ J. H. Espenson and J. P. Birk, *ibid.*, 87, 3280 (1965).

⁽⁷⁾ A. Haim and N. Sutin, *ibid.*, 87, 4210 (1965).

ing an aliquot with air and then passing the resulting chromium(III) solution through a Dowex 50W-X8 ion-exchange column in the hydrogen form. The acid concentration of the eluate was determined by titration with standard base and the perchloric acid concentration of the original chromium(II) solution obtained after correction for the zinc and chromium(II) in the solution. The zinc was determined polarographically.8

Sodium perchlorate solutions were prepared by neutralizing sodium carbonate with perchloric acid.

The cobalt(III) complexes were prepared from [Co(en)₂Cl₂]Cl⁹ using published procedures: trans-[Co(en)2(NCS)2]ClO4, 10, 11 cis- $[Co(en)_2(NCS)_2]ClO_4,^{10,11} trans-[Co(en)_2(NCS)Cl]Br,^{12}$ cis-[Co-(en)₂(NCS)Cl]Cl,¹³ trans-[Co(en)₂(NCS)OH]SCN,¹⁴ trans-[Co(en)₂-NH₃(NCS)](SCN)₂,¹⁵ and *cis*-[Co(en)₂NH₃(NCS)](SCN)₂.¹⁵ The complexes were purified by recrystallization and by ion exchange on a Dowex 50W-X8 column in the hydrogen form. The complexes of charge +1 were eluted with 0.5 M (trans) or 1 M (cis) perchloric acid and those of charge +2 with 2 M (trans) or 3 M (cis) perchloric acid. A solution containing an equilibrium mixture¹⁶ of *cis*-(82%) and *trans*-Co(en)₂OH₂(NCS)²⁺ (18%) was prepared by adding alkali to a solution of cis-Co(en)2(NCS)Cl+ and rapidly reacidifying with perchloric acid.

Preparation of CrSCN²⁺ Solutions. Two methods were used to prepare solutions containing CrSCN²⁺ for the aquation and isomerization studies. In the first method, a solution containing 1.0 \times 10^{-2} M Cr²⁺ was gradually added to an equal volume of a wellstirred solution containing $1.1 \times 10^{-2} M \text{ Fe}^{3+}$ and $9.0 \times 10^{-3} M$ SCN-. The iron(II) produced in this reaction was oxidized to iron(III) with excess sodium peroxydisulfate. In the second method a slightly less than stoichiometric amount of Cr²⁺ was gradually added to a well-stirred solution $1 \times 10^{-3} M$ in trans-Co(en)₂OH₂-(NCS)²⁺. The CrSCN²⁻ and CrNCS²⁺ were adsorbed on a Dowex 50W-X8 column and eluted with 1 M perchloric acid. The ionexchange procedure was carried out with chilled solutions.

The solutions obtained by elution with 1 M perchloric acid (which contained chromium(III) complexes of charge +2) were analyzed in the following manner. Total chromium was determined spectrophotometrically as CrO_4^{2-} (ϵ 4.83 \times 10³ at 372 $m\mu$) after oxidation with alkaline peroxide.¹⁷ Free thiocyanate was determined spectrophotometrically as FeNCS²⁺ after the addition of excess iron(III) (ϵ 3.60 \times 10³ at 460 m μ when [Fe(III)] = $3.12 \times 10^{-2} M$, [SCN⁻] $\sim 10^{-5} M$, and [HClO₄] = 1 M). For the determination of total thiocyanate (free and bound) the solution containing CrSCN²⁺ and CrNCS²⁺ was made slightly alkaline prior to addition of the iron(III) and perchloric acid solutions. This treatment releases SCN- very rapidly from both CrNCS² and CrSCN2-. The [SCN-]/[Cr(III)] ratios of three different preparations were 0.99, 1.02, and 1.03.

Analysis of Mixtures of CrSCN²⁺ and CrNCS²⁺. Two methods were devised for determining the composition of solutions containing both CrNCS²⁺ and CrSCN²⁺. In the first method, chlorine was bubbled through the solution; this treatment converts CrNCS2+ and CrSCN2+ into Cr3+ and CrCl2+, respectively.18 The reaction products were separated by ion exchange on a Dowex 50W-X8 column, and the chromium content of the CrCl²⁺ fraction was determined. In the second method, CrNCS²⁺ and CrSCN²⁺ were converted into CrNCSHg4+ and Cr3+, respectively, by the addition of $Hg(ClO_4)_2$ in 1 M HClO₄. Following this treatment, hydrochloric acid was added to convert CrNCSHg4+ to CrNCS2+ and HgCl₂, and the concentration of CrNCS²⁺ was measured spectrophotometrically ($\epsilon 2.90 \times 10^3$ at 292 m μ^{19}). After the ratio of isomerization to aquation of CrSCN²⁺ had been established, the reaction mixtures were analyzed by measuring the amount of thiocyanate released in the aquation.

Kinetic Measurements. The oxidation-reduction reactions were studied by the use of the flow apparatus which has been described previously.²⁰ The disappearance of the cobalt(III) complexes²¹ was followed by observing the change in absorbance in the ultraviolet and at their absorption maxima in the visible (generally near 500 mµ). The chromium(II)-catalyzed isomerization of CrSCN²⁺ was followed by observing the change in absorbance in the range 260 to 350 m μ . A large excess of chromium(II) was present in all the above reactions. The aquation and the spontaneous isomerization of CrSCN²⁺ were followed on a Cary Model 14 recording spectrophotometer by observing the decrease in absorbance at 262 m μ and at 630 m μ , as well as by determining the amount of thiocyanate released. At the completion of the reaction the absorbance at 292 m μ was measured in order to determine the amount of isomerization which had taken place. In all cases the reactions were either first order or pseudo first order. The rate constants were obtained from the slopes of plots of log $(D_t - D_{\infty})$ vs. time, where D_t and D_{∞} are the optical densities at time t and at the end of the reaction, respectively. All the kinetic measurements were made at 25.0° and an ionic strength of 1.0 M.

The amount of thiocyanate transferred from the cobalt to the chromium in the oxidation-reduction reactions was obtained in the following manner. After the reaction between the cobalt(III) complex (usually in slight excess) and chromium(II) had proceeded to completion, the reaction mixture was analyzed for free thiocyanate and for thiocyanate bound to chromium(III). The ratio of thiocyanate bound to chromium(III) to the sum of the free and bound thiocyanate was taken as the fraction of thiocyanate transferred.

Results

The Oxidation-Reduction Reactions. The secondorder rate constants for the oxidation of chromium(II) by the $Co(en)_2(NCS)X^{n+}$ complexes are presented in Table I. With the exception of *cis*- and *trans*-Co(en)₂-(NCS)Cl⁺, quantitative transfer of thiocyanate from cobalt to chromium is observed, indicating that these reactions proceed via a thiocyanate-bridged transition state. The chloro complexes, on the other hand, react predominantly via a chloride-bridged transition state.

The reaction of chromium(II) with trans-Co(en)2-OH₂(NCS)²⁺ was studied in some detail. In the presence of excess chromium(II) this reaction proceeds in two stages. The first is the reduction of the cobalt(III) complex by chromium(II) and the second is the chromium(II)-catalyzed isomerization of the CrSCN²⁺ produced in the first stage. The rate constant for the isomerization reaction is 42 \pm 2 M^{-1} sec⁻¹ in 1 M perchloric acid, in excellent agreement with the value reported earlier.7

The rate of oxidation of chromium(II) by trans-Co-(en)₂OH₂(NCS)²⁺ increases with decreasing acidity. In the range [HClO₄] = 1.0 to 10^{-2} M, the observed rate constant is given by

$$k = k_1 + k_2 K_{\rm h} / [{\rm H}^+] \tag{2}$$

where k_1 and k_2 are the rate constants for the reactions of chromium(II) with trans-Co(en)₂OH₂(NCS)²⁺ and

- (19) C. Postmus and E. L. King, J. Phys. Chem., 59, 1208 (1955).
- (20) G. Dulz and N. Sutin, Inorg. Chem., 2, 917 (1963).
- (21) As a consequence of the ion-exchange treatment of the cobalt-(III) salts perchlorate was the only anion present in these solutions.

⁽⁸⁾ J. J. Lingane, Ind. Eng. Chem., Anal. Ed., 18, 429 (1946).

⁽⁹⁾ W. C. Fernelius, Ed., "Inorganic Syntheses," Vol. II, McGraw-Hill Book Co., Inc., New York, N. Y., 1946, p. 222.

 ⁽¹⁰⁾ A. Werner, Ann., 386, 198 (1912).
 (11) These cobalt(III) complexes were prepared by L. S. Hegedus.

⁽¹²⁾ A. Werner, Ann., 386, 133 (1912).
(13) A. Werner, *ibid.*, 386, 139 (1912).

⁽¹⁴⁾ A. Werner, *ibid.*, 386, 158 (1912).
(15) A. Werner, *ibid.*, 386, 206 (1912).

⁽¹⁶⁾ C. K. Ingold, R. S. Nyholm, and M. L. Tobe, J. Chem. Soc., 1691 (1956).

⁽¹⁷⁾ G. W. Haupt, J. Res. Natl. Bur. Std., 48, 414 (1952).

⁽¹⁸⁾ Blank experiments showed that less than 1% of CrCl²⁺ is formed when $CrNCS^{2+}$ is treated with Cl_2 in 1 M perchloric acid. However, about 6% of $CrC1^{2+}$ is formed in 1 M hydrochloric acid. In this connection it is noteworthy that the reactions of nitrogen-bonded chromium-(III) thiocyanate complexes with oxidants do not preserve the chromiumnitrogen bond, but result in the formation of the corresponding aquo complexes (A. Werner and J. Halban, *Ber.*, **39**, 2668 (1906)). The formation of $Cr(OH_2)_{5^{3+}}$ in the CrNCS²⁺–Cl₂ reaction is therefore consistent with the above findings. By contrast, the oxidations of nitrogen-bonded cobalt(III) thiocyanate complexes occur without breaking the cobalt-nitrogen bond and produce the corresponding ammine com-plexes (A. Werner and H. Mütler, Z. Anorg, Allgem. Chem., 22, 91 (1900)). The CrSCN²⁺-Cl₂ reaction bears a striking resemblance to the Cr(NH₃)₅Br²⁺-Cl₂ and Co(NH₃)₅Br²⁺-Cl₂ reactions (A. Haim and H. Taube, J. Am. Chem. Soc., 85, 3108 (1963)) in that all these oxidations produce the corresponding chloro complexes quantitatively.

Table I. Second-Order Rate Constants for the Reduction of Some $[Co(en)_{?}(NCS)X]^{n+1}$ Complexes by Chromium(II) in 1.0 M Perchloric Acid at 25.0°

Oxidant ^a	Reductant ^a	k, M^{-1} sec ⁻¹	SCN- transfer, %	
trans-[Co(en) ₂ (NCS)Cl] ⁺ (3 × 10 ⁻⁶ - 1 × 10 ⁻⁵ M)	$\operatorname{Cr}^{2+}(3 \times 10^{-5} - 1 \times 10^{-4} M)$	$(2.5 \pm 0.4) \times 10^{6}$	≤5	
$cis-[Co(en)_2(NCS)Cl]^+ (3 \times 10^{-6}-1 \times 10^{-5} M)$	$\operatorname{Cr}^{2+}(3 \times 10^{-5} - 1 \times 10^{-4} M)$	$(1.8 \pm 0.4) \times 10^{6}$	≤ 5	
<i>trans</i> -[Co(en) ₂ OH ₂ (NCS)] ²⁺ (2 × 10 ⁻⁴ - 1 × 10 ⁻³ M)	$\operatorname{Cr}^{2+}(2 \times 10^{-3} \times 10^{-2} M)$	$(1.4 \pm 0.1) \times 10^3$	98-100	
cis-[Co(en) ₂ OH ₂ (NCS)] ²⁺ (2 × 10 ⁻⁴⁻ 1 × 10 ⁻³ M)	$Cr^{2+} (2 \times 10^{-3} - 2 \times 10^{-2} M)$	45 ± 2	98-100	
<i>trans</i> - $[Co(en)_2(NCS)_2]^+$ (1 × 10 ⁻³ M)	Cr^{2+} (4 × 10 ⁻² -1 × 10 ⁻¹ M)	28 ± 1	~110	
cis-[Co(en) ₂ (NCS) ₂]+ (1 × 10 ⁻³ M)	$Cr^{2+}(4 \times 10^{-2} - 1 \times 10^{-1} M)$	30 ± 1	~ 110	
<i>trans</i> -[Co(en) ₂ NH ₃ (NCS)] ²⁺ (2 × 10 ⁻⁴ M)	Cr^{2+} (4 × 10 ⁻² -1 × 10 ⁻¹ M)	3.8 ± 0.2	~ 95	
cis-[Co(en) ₂ NH ₃ (NCS)] ²⁺ (5 × 10 ⁻⁴ M)	Cr^{2+} (4 × 10 ⁻² –1 × 10 ⁻¹ M)	3.1 ± 0.1	~ 95	

^aThe numbers in parentheses are the concentration ranges used.

trans-Co(en)₂(NCS)OH⁺, respectively, and $K_{\rm h}$ is the equilibrium constant for the reaction

trans-Co(en)₂OH₂(NCS)²⁺ \implies trans-Co(en)₂(NCS)OH⁺ + H⁺

A plot of k vs. $1/(H^+)$ gives $k_1 = (1.4 \pm 0.1) \times 10^3$ $M^{-1} \sec^{-1}$ and $k_2 K_h = 6.6 \pm 0.6 \sec^{-1}$. The extent of thiocyanate transfer in the reaction was also determined at various perchloric acid concentrations. The ratio $([CrSCN^{2+}] + [CrNCS^{2+}])/[Cr^{3+}]$ decreases with decreasing acidity; in the range [HClO₄] = 1.0 to 10^{-2} M it is equal to 1.4×10^{2} [H⁺].

Both CrSCN²⁺ and CrNCS²⁺ are produced when chromium(II) reacts with trans-Co(en)₂OH₂(NCS)²⁺. The yield of CrSCN²⁺, *i.e.*, the ratio [CrSCN²⁺]/ $([CrSCN^{2+}] + [CrNCS^{2+}])$, is $45 \pm 2\%$ in 1 *M* per-chloric acid. It was previously found⁷ that the yield of CrSCN²⁺ in reaction 3 is $35 \pm 5\%$ in 1 *M* perchloric

$$FeNCS^{2+} + Cr^{2+} \longrightarrow (CrSCN^{2+} + CrNCS^{2+}) + Fe^{3+}$$
(3)

acid.

The rate constant for the cis-Co(en)₂OH₂(NCS)²⁺-Cr²⁺ reaction is too similar to that of the CrSCN²⁺-Cr²⁺ reaction to allow an accurate measurement of the yield of CrSCN²⁺. However, the changes in absorption observed in the 260–280-m μ region clearly indicate that $CrSCN^{2+}$ is also produced in this reaction. No attempts were made to confirm the formation of $CrSCN^{2+}$ in the Cr^{2+} reductions of $Co(en)_2(NCS)_2^+$ and Co(en)₂NH₃(NCS)²⁺.

The Spectrum of $CrSCN^{2+}$. The absorption spectrum of CrSCN²⁺ was calculated from the spectra of mixtures of CrSCN²⁺ and CrNCS²⁺. In common with other CrX²⁺ complexes, CrSCN²⁺ has two maxima in the visible [620 m μ (ϵ 36), 435 m μ (ϵ 28)]. In addition, CrSCN²⁺ has an absorption maximum in the ultraviolet [262 m μ ($\epsilon \sim 1.1 \times 10^4$)]. A comparison of the spectra of CrSCN²⁺, CrI²⁺ [650 mµ (ε 36.1), 474 mµ $(\epsilon 32.6)$],²² CrBr²⁺ [622 m μ (ϵ 19.9), 432 m μ (ϵ 22.4)],²³ $CrCl^{2+}$ [609 m μ (ϵ 16.4), 428 m μ (ϵ 20.8)],²² and CrF^{2+} [595 m μ (ϵ 12.2), 417 m μ (ϵ 11.8)]²² shows that sulfur-bonded thiocyanate is adjacent to bromide in the spectrochemical series. On the other hand, nitrogen-bonded thiocyanate [570 mµ (e 31.4), 410 mµ $(\epsilon 33.5)$] lies among the nitrogen-bonded complexes, CrN_3^{2+} [585 m μ (ϵ 67.5), 434 m μ (ϵ 66.4)],²⁴ CrNO²⁺

[559 m μ (ϵ 28), 449 m μ (ϵ 120)], ²⁵ CrNC²⁺ (560–545 m μ),⁶ and CrNH₃³⁺ [545 m μ (ϵ 22.1), 397 m μ (ϵ 21.8)].²⁶

The Chromium(II)-Catalyzed Isomerization of $CrSCN^{2+}$. We have previously studied the rate of the chromium(II)-catalyzed isomerization of CrSCN²⁺ in 1 M perchloric acid. These measurements have now been extended to lower acidities. The acid dependence of the observed rate constant in the range $[HClO_4]$ = 1.0 to 10^{-2} M is described by

$$k' = k_1' + K_h' k_2' / [H^+]$$
 (4)

where k_1' and k_2' are the rate constants for the reactions of chromium(II) with CrSCN²⁺ and Cr(SCN)OH⁺, respectively, and $K_{\rm h}'$ is the equilibrium constant for the reaction

$$CrSCN^{2+} + H_2O \Longrightarrow Cr(SCN)OH^- + H^+$$
 (5)

A plot of k' vs. $1/[H^+]$ gives $k_1' = 40 \pm 2 M^{-1} \sec^{-1}$ and $k_2'K_{\rm h}' = 2 \pm 0.2$ sec⁻¹. In contrast to the reaction of trans-Co(en)2(NCS)OH+ with chromium(II), the reaction of Cr(SCN)OH+ with chromium(II) produces only CrNCS²⁺.

The Spontaneous Isomerization and Aquation Reactions of $CrSCN^{2+}$. In the absence of chromium(II), CrSCN²⁺ undergoes aquation and isomerization. The over-all rate constants for these reactions are presented in Table II. The acid-dependence of the over-all rate constant is given by

$$k = (k_{a} + k_{i}) + (k_{a}' + k_{i}')K_{h}'/[H^{+}]$$
(6)

where k_a , k_a' , k_i , and k_i' are the rate constants for the aquation and isomerization of CrSCN²⁺ and Cr-(SCN)OH⁺, respectively. A plot of k vs. 1/[H⁺] gives $(k_a + k_i) = 6.3 \times 10^{-5} \text{ sec}^{-1}$ and $(k_a' + k_i')K_h'$ = $1.45 \times 10^{-5} M^{-1} \text{ sec}^{-1}$. The ratio k_a/k_i , determined from the amounts of Cr³⁺ and CrNCS²⁺ produced in the reaction, is equal to 1.8 ± 0.2 and is independent of the acidity. Consequently $k_a = 4.0 \times 10^{-5} \text{ sec}^{-1}$, $k_i = 2.3 \times 10^{-5} \text{ sec}^{-1}$, $k_a'K_h' = 9.3 \times 10^{-6} M^{-1}$ sec⁻¹, and $k_i'K_h' = 5.2 \times 10^{-6} M^{-1} \text{ sec}^{-1}$. The effect of chloride on the product distribution of the reactions was studied at $[H^+] = 1.0 M$, $[Cl^-] = 0.8 M$, and $[ClO_4^-] = 0.2 M$. The yield of $CrNCS^{2+}$ was not affected by the addition of chloride while the yield of

(26) M. Ardon and B. E. Mayer, ibid., 2816 (1962).

⁽²²⁾ T. W. Swaddle and E. L. King, Inorg. Chem., 4, 532 (1965). (23) H. Taube and H. Myers, J. Am. Chem. Soc., 76, 2103 (1954).

⁽²⁴⁾ T. W. Swaddle and E. L. King, *Inorg. Chem.*, 3, 234 (1964).
(25) M. Ardon and J. I. Herman, *J. Chem. Soc.*, 507 (1962).

Table II. Spontaneous Isomerization and Aquation of $CrSCN^{2+}$ at 25.0° and $\mu = 1.0 M^{a}$

$[HClO_4], \\ M$	$[CrSCN^{2+}],$	k, sec ⁻¹
1.0	2.3×10^{-4}	7.2×10^{-5}
1.0	2.3×10^{-4}	7.5×10^{-5}
1.0	5.7×10^{-4}	7.8×10^{-5}
5.0×10^{-2}	5.7×10^{-6}	3.62×10^{-4}
2.0×10^{-2}	5.7×10^{-6}	7.7×10^{-4}
2.0×10^{-2}	1.7×10^{-6}	7.3×10^{-4}
2.0×10^{-2}	1.7×10^{-5}	7.9×10^{-4}
1.25×10^{-2}	5.7×10^{-6}	1.22×10^{-3}

^a Measurements at 262 m μ except where indicated. ^b Measurements at 460 m μ by following the release of thiocyanate. ^c Measurements at 630 m μ .

where k_{12} and K_{12} are the rate constant and equilibrium constant, respectively, for the Co(NH₃)₅Cl²⁺-Cr²⁺ reaction, k_{13} and K_{13} are the corresponding quantities for the Co(NH₃)₅Cl²⁺-Fe²⁺ reaction, and f_{12} and f_{13} have been defined by Marcus.³¹ In these systems $f_{12}/f_{13} \approx 1$ and therefore eq 7 reduces to $k_{12}/k_{13} = (k_{22}K_{12}/k_{33}K_{13})^{1/2}$. The rate constants for the chromium(II) reactions calculated using this expression are presented in Table IV. It is necessary to emphasize that eq 7 was derived for outer-sphere electron-transfer reactions only. Nevertheless, the agreement between observed and calculated rates, especially in the pentaammine series, is encouraging, suggesting that an expression of the form of eq 7 may be applicable also to

Table III. Comparison of the Rate of Reduction of Some [Co(en)₂XY]ⁿ⁺ Complexes by Chromium(II) and Iron(II)^a at 25.0°

		trans-X	- Relative rate constants - cis-X	trans-X
Oxidant	Reductant	$\frac{1}{cis-X}$	cis-NH ₃	trans-NH ₃
$[Co(en)_2NH_3(NCS)]^{2+}$	Cr ²⁺	1.2	1.0	1.0
$[Co(en)_2(NCS)_2]^+$	Cr 2+	9×10^{-1}	4.8^{b}	$3, 7^{b}$
$[Co(en)_2OH_2(NCS)]^{2+}$	Cr ²⁺	3×10^{1}	1.5×10^{1}	3.7×10^{2}
$[Co(en)_2NH_3Cl]^{2+}$	Fe ²⁺	3.7	1.0	1.0
[Co(en) ₂ (NCS)Cl] ⁺	Fe ²⁺	8×10^{-1}	10	2
$[Co(en)_2OH_2Cl]^{2+}$	Fe ²⁺	5.2×10^{2}	2.6×10^{1}	3.6×10^{3}

^a Data from ref 27. ^b Corrected for statistical factor.

CrCl²⁺, based on the amount of CrSCN²⁺ initially present, was 2.2%.

Discussion

The Oxidation-Reduction Reactions. The rates of the $Co(en)_2(NCS)X^{n+}-Cr(II)$ reactions measured in the present work are compared in Table III with the rates of some $Co(en)_2ClX^{n+}-Fe(II)$ reactions.²⁷ Although the chromium(II) reactions proceed via thiocyanate-bridged transition states, while the iron(II) reactions are believed to proceed *via* chloride-bridged transition states, the general trends in the two series are remarkably similar. First, for $X = NH_3$ or SCN⁻, only minor differences between the rates of the *cis* and *trans* isomers are observed. Second, replacement of NH₃ by SCN⁻⁻ in either the cis or trans positions results in a modest increase in rate. Third, replacement of NH₃ by H₂O results in a large increase in rate, especially for the trans compounds. The similarity in the trends provides additional support for the view that the iron(II) reductions are chloride bridged.28,29 Further evidence for this view comes from a somewhat more direct comparison of the rates. The rates of the $Co(NH_3)_5$ - $Cl^{2+}-Fe^{2+}$ and $Co(NH_3)_5Cl^{2+}-Cr^{2+}$ reactions have been related ³⁰ by the equation ³¹

$$\frac{k_{12}}{k_{13}} = \left(\frac{k_{22}K_{12}f_{12}}{k_{33}K_{13}f_{13}}\right)^{1/2}$$
(7)

(27) P. Benson and A. Haim, J. Am. Chem. Soc., 87, 3826 (1965).

- (28) Direct evidence for a chloride-bridged mechanism in the $CoC1^{2+}$ -Fe²⁺ reaction has been obtained, ²⁹
- (29) T. J. Conocchioli, G. Nancollas, and N. Sutin, J. Am. Chem. Soc., 86, 1453 (1964).
- (30) N. Sutin, Symposium on Exchange Reactions, International Atomic Energy Agency, Brookhaven National Laboratory, June 1965.
 (31) R. A. Marcus, Ann. Rev. Phys. Chem., 15, 155 (1964).

inner-sphere reactions. A similar calculation for the $Co(NH_3)_5Cl^{2+}-V^{2+}$ reaction, which is believed to proceed by an outer-sphere mechanism, yields a rate constant which differs from the observed one by a factor of about 10³. This disagreement is not surprising since the comparison involves two reactions with different mechanisms.

Table IV. Rate Constants for Some Reactions of Chromium(II) and Iron (II) with Cobalt(III) Complexes at 25.0° and $\mu = 1.0 M$

Reaction	$\frac{\text{Log}}{k_i^a}$	$Log k_{obsd}$	$Log k_{caled}^{b}$	Ref
$C_0(NH_3)_5Cl^{2+} + Fe^{2+}$	1.3	-2.9		c, d
$Co(NH_3)_5Cl^{2+} + Cr^{2+}$	~ 1.7	6.4	6.6	e, f
$Co(NH_3)_5F^{2+} + Fe^{2+}$	1.6	-2.2		d, g
$Co(NH_3)_5F^{2+} + Cr^{2+}$	-1.6	5.9	5.5	e, f
$Co(NH_3)_5N_3^{2+} + Fe^{2+}$	3.9	-2.0		h, i
$Co(NH_3)_5N_3^{2+} + Cr^{2+}$	0.8	5.5	5.7	j, k
cis-Co(en) ₂ (NCS)Cl ²⁺ + Fe ²⁺	1.3	-3.8		c, l
cis-Co(en) ₂ (NCS)Cl ²⁺ + Cr ²⁺	1.7	6.3	5.7	e, m
trans-Co(en) ₂ (NCS)Cl ²⁺ + Fe ²⁺	1.3	-3.9		c, l
<i>trans</i> -Co(en) ₂ (NCS)Cl ²⁺ + Cr ²⁺	1.7	6.4	5.6	e, m

^a i = 2 for chromium; i = 3 for iron. ^b Calculated from k_{12}/k_{13} = $(k_{22}K_{12}/k_{33}K_{12})^{1/2}$, ^c N. Sutin, J. K. Rowley, and R. W. Dodson, J. Phys. Chem., **65**, 1248 (1961). ^d J. H. Espenson, Inorg. Chem., **4**, 121 (1965). ^e Reference 4. ^f Reference 36. ^e J. Hudis and A. C. Wahl, J. Am. Chem. Soc., **75**, 4153 (1953). ^h D. Bunn, F. S. Dainton, and S. Duckworth, Trans. Faraday Soc., **57**, 1131 (1961). ⁱ A. Haim, J. Am. Chem. Soc., **85**, 1016 (1963). ⁱ Reference 40. ^k Reference 33. ^l Reference 27. ^m This work.

The dependence of the rate of reduction of *trans*- $Co(en)_2OH_2(NCS)^{2+}$ upon [H⁺] is given by eq 2. The acid-dependent term can be interpreted in terms of the reaction of *trans*- $Co(en)_2(NCS)OH^+$ with chromium(II).

Substitution of $K_{\rm h} \approx 5 \times 10^{-7} \ M^{32}$ gives $k_2 \approx 1 \times$ $10^7 M^{-1} \text{sec}^{-1}$. It is possible to determine whether SCNor OH⁻ is the bridging group by considering the dependence of the thiocyanate transfer on the acidity. If it is assumed that trans-Co(en)₂OH₂(NCS)²⁺ reacts with chromium(II) entirely via a thiocyanate-bridged intermediate and that trans-Co(en)₂(NCS)OH⁺ reacts with chromium(II) entirely via a hydroxide-bridged intermediate

trans-Co(en)₂OH₂(NCS)²⁻ + Cr²⁺ $\xrightarrow{k_1}$ $[Co-NCS-Cr]^* \longrightarrow (CrSCN^{2+} + CrNCS^{2+}) + Co(II) \quad (8)$

trans-Co(en)₂(NCS)OH⁺ + Cr²⁺
$$\xrightarrow{k_2}$$

H
[Co-O-Cr]* \longrightarrow Cr³⁺ + Co(II) (9)

then the dependence of the ratio $([CrSCN^{2+}] + [Cr NCS^{2+}$]/[Cr³⁺] on the acidity can be readily calculated. This ratio is equal to $k_1[H^+]/k_2K_h = 2.1 \times 10^2[H^+]$, in fair agreement with the value 1.4×10^{2} [H⁺] obtained from the product analysis. If the difference between these two values is significant, it suggests that some water-bridging occurs in the acid-dependent path. This conclusion is not unreasonable since SCN⁻ is a better bridging ligand than H_2O by a factor of only 40. (The rate constants for the Co(NH₃)₅NCS²⁺-Cr²⁺ and $Co(NH_3)_5OH_2^{3+}-Cr^{2+}$ reactions are 19 M^{-1} sec⁻¹ and 0.5 M^{-1} sec⁻¹, respectively,³³ at 25.0°.) It is of interest that the rate constant for reaction 9 ($k_2 \sim 1$ \times 10⁷ M^{-1} sec⁻¹) is similar to that for reaction 10 (2 \times 10⁶ M^{-1} sec⁻¹).³⁴ Oxygen-tracer studies have es-

$$Co(NH_3)_5OH^{2+} + Cr^{2+} \longrightarrow Cr^{3-} + Co(II)$$
(10)

tablished that reaction 10 proceeds via a hydroxidebridged intermediate. 35

While an acid-dependent path is present in the reaction of trans-Co(en)₂OH₂(NCS)²⁺ with chromium(II) it is absent in the *trans*- $Co(en)_2OH_2Cl^{2+}-Fe(II)$ reaction. This difference may be due partly to the weaker acidity of trans-Co(en)₂OH₂Cl²⁺ (pK = 7.2)³² compared to trans-Co(en)₂OH₂(NCS)²⁺ (pK = 6.3)³² and partly to the better bridging ability of chloride compared to thiocyanate. (The rate constants for the reduction of $Co(NH_3)_5Cl^{2+}$ and $Co(NH_3)_5NCS^{2+}$ by chromium(II) are 2.6 \times 10⁶ M^{-1} sec^{-1 36} and 19 M^{-1} sec⁻¹, ³³ respectively, at 25.0°.) A detailed study of the acid dependence of the cis-Co(en)₂OH₂(NCS)²⁺-Cr(II) reaction was not undertaken. However, preliminary experiments indicate a slight increase in rate and decrease in the fraction of thiocyanate transferred in 0.1 *M* compared to 1.0 *M* perchloric acid.

These studies also show the effect of chelation of the nonbridging ligands on the reaction rate. A comparison of the rate constants for the reduction of cis- and trans-Co(en)₂NH₃(NCS)²⁺ and $-Co(NH_3)_5NCS^{2+}$ by

(35) R. K. Murmann, H. Taube, and F. A. Posey, J. Am. Chem. Soc., 79, 262 (1957).

(36) J. P. Candlin and J. Halpern, Inorg. Chem., 4, 766 (1965).

chromium(II) ($k = 3.1, 3.8, \text{ and } 19 \ M^{-1} \text{ sec}^{-1} \text{ at } 25.0^{\circ}$, respectively) shows that the replacement of four ammonia molecules by two ethylenediamine molecules decreases the reaction rate by a factor of about 5. The rates of reaction of $Co(en)_2 NH_3(SO_4)^+$ and $Co(NH_3)_5^ SO_4^+$ with chromium(II) also differ by a similar factor.³⁷

The formation of CrSCN²⁺ in the reduction of trans-Co(en)₂OH₂(NCS)²⁺ presumably arises from the attack of the chromium(II) on the sulfur atom of the thiocyanate ligand. It is more difficult to account for the CrNCS²⁺ formed in this reaction. Some possible explanations are: (a) the $CrNCS^{2+}$ is formed in the chromium(II)-catalyzed isomerization of CrSCN²⁺ during the reaction of chromium(II) with trans-Co(en)₂- $OH_2(NCS)^{2-}$. However, it can readily be seen that this explanation cannot account for all the CrNCS²⁺ produced. If the CrNCS²⁺ is produced only in reaction 1 then the ratio [CrNCS²⁺]/[CrSCN²⁺] at the end of the *trans*-Co(en)₂OH₂(NCS)²⁺-Cr(II) reaction can be calculated from

$$\frac{[\text{CrNCS}^{2+}]_{\infty}}{[\text{Cr}(\text{II})]_{0}} = 1 - \frac{k_{1}[\text{Co}(\text{III})]_{0}}{k_{c}[\text{Cr}(\text{II})]_{0}} \left\{ 1 - \exp\left[-\frac{k_{c}[\text{Cr}(\text{II})]_{0}}{k_{1}[\text{Co}(\text{III})]_{0}}\right] \right\} (11)$$

Since under the conditions of the experiments k_1 [Co- $(III)_{0}/k_{c}[Cr(II)]_{0} > 10^{2}, [CrNCS^{2+}]/[CrSCN^{2+}] \approx$ 0. (b) The $CrNCS^{2+}$ is formed by the incorporation of "free" thiocyanate. This reaction appears to proceed very efficiently. For example, CrNCS²⁺ is quantitatively produced in the thiocyanate-catalyzed iron(III)chromium(II) reaction which does not involve FeNCS²⁺ as a reactant.⁷ For example, on mixing a solution 2 \times 10⁻² M in NaSCN and 4.2 \times 10⁻¹ M in chromium(11) with an equal volume of a solution 5.2 \times 10⁻¹ M in iron(III), the yield of CrNCS²⁺ based on the thiocyanate was 22%. The value predicted from the rate constants for the Fe³⁺-Cr²⁺ and Fe³⁺-Cr²⁺-SCN⁻ reactions is 26%. Air oxidation of chromium(II) solutions containing thiocyanate also produces CrNCS²⁺ in good yield. Thus, bubbling O_2 through a solution 1 \times 10^{-2} M in NaSCN and 2.1×10^{-1} M in chromium(II) produces about 40% of CrNCS²⁺, based on the amount of thiocyanate initially present. Similarly, when 1.2 $\times 10^{-3} M \text{ Co}(\text{NH}_3)_{\circ} \text{Cl}^{2+}$ reacts with $1 \times 10^{-3} M$ chromium(II) in the presence of $1.0 \times 10^{-3} M$ NaSCN, the yield of CrNCS²⁺ is 8%. Although these effects are quite striking, they can account for only a small proportion of the CrNCS2+ formed in the trans-Co- $(en)_2OH_2(NCS)^{2+}-Cr(II)$ reaction. (c) The chromium(II) attacks the nitrogen atom of the thiocyanate ligand. The steric restrictions of this type of attack are severe and $Cr(H_2O)_6^{2+}$ probably has to lose two of its coordinated water molecules in order to form a bond to the nitrogen.⁴ Nevertheless, adjacent attack of the thiocyanate offers the most reasonable explanation of the $CrNCS^{2+}$ produced. Since the ratio of $[CrSCN^{2+}]/$ [CrNCS²⁺] is not significantly increased on going from 25.0 to 0° , this interpretation requires that the entropies and heats of activation for adjacent and remote attack of thiocyanate not be very different. This implies that the unfavorable steric factor for the adjacent attack

(37) R. T. M. Fraser, ibid., 2, 954 (1963).

⁽³²⁾ Unpublished results of M. Baldwin quoted by M. L. Tobe, Sci. *Progr.*, 48, 483 (1960). The reference gives $K_{\rm h} = 5 \times 10^{-7} M$ at 20° and an unspecified ionic strength.

⁽³³⁾ J. P. Candlin, J. Halpern, and D. L. Trimm, J. Am. Chem. Soc., 86, 1019 (1964).

⁽³⁴⁾ H. Taube, Advan. Inorg. Chem. Radiochem., 1, 1 (1959).

is largely compensated by the increase in entropy accompanying the loss of the two water molecules coordinated to the chromium(II). Moreover, although adjacent attack yields stable $CrNCS^{2+}$, this favorable enthalpy change appears to be largely cancelled by the energy required to remove the coordinated water molecules.

In our previous communication,⁷ we suggested that the stable isomer of iron(III) was nitrogen bonded. However, since both $CrNCS^{2+}$ and $CrSCN^{2+}$ were formed in the reaction between chromium(II) and the iron(III) thiocyanate complex, we mentioned the possibility of forming $CrSCN^{2+}$ by adjacent attack on the sulfur-bonded isomer $FeSCN^{2+}$. In view of the formation of both $CrSCN^{2+}$ and $CrNCS^{2+}$ in the reaction of Cr^{2+} with $Co(en)_2OH_2(NCS)^{2+}$, a complex in which thiocyanate is definitely nitrogen bonded, we can now conclude that the stable monothiocyanate complex of iron(III) is nitrogen bonded.

Chromium(II)-Catalyzed Isomerization. The chromium(II)-catalyzed isomerization of $CrSCN^{2+}$ (eq 1) proceeds by attack of chromium(II) at the nitrogen atom. The position of attack of the chromium(II) on $CrNCS^{2+}$ in the Cr^{2+} - $CrNCS^{2+}$ exchange reaction⁴ is less certain. As has been seen, chromium(II) attack occurs at the nitrogen and sulfur atoms of Co- NCS^{2+} and FeNCS²⁺ with roughly equal probability. It is therefore likely that the $CrNCS^{2+}$ - Cr^{2+} exchange also proceeds by both adjacent and remote attack. Under these conditions the rate constant for the exchange of labeled chromium between $CrNCS^{2+}$ and Cr^{2+} is equal to the sum of the rate constants for adjacent and remote attack, *i.e.*

$$k_{\text{ex}} = (k_n + 2k_s) \tag{12}$$

where k_n and k_s are defined by the reactions

$$CrNCS^{2+} + Cr^{2+} \frac{k_n}{k_n} CrNCS^{2+} + Cr^{2+}$$
 (13)

$$\operatorname{CrNCS}^{2^+} + \operatorname{Cr}^{2^+} + \frac{k_s}{k_c} \operatorname{CrSCN}^{2^+} + \operatorname{Cr}^{2^+}$$
(14)

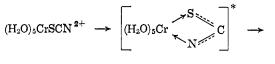
The coefficient 2 in eq. 12 is necessary because the reactants and products of the remote attack, but not of the adjacent attack, are different.³⁸ If it is assumed that the ratio k_n/k_s is the same for the CrNCS^{2+–}Cr²⁺ and FeNCS^{2+–}Cr²⁺ systems then $k_{ex} = 4k_s$. Since k_{ex} = 1.4 × 10⁻⁴ M^{-1} sec⁻¹ at 25.0°,⁴ we estimate that $k_s = 3.5 \times 10^{-5}$ and $k_n = 7.0 \times 10^{-5} M^{-1}$ sec⁻¹ at 25.0°. For purposes of comparison we may correct the rate constants for any differences in the standard free energy changes of the reactions. This can be accomplished by means of the Marcus relation^{31,39}

$$k_{12} = (k_{11}k_{22}K_{12})^{1/2}$$
(15)

where $k_{12} = k_s$, $K_{12} = k_s/k_c$ (or k_c and k_c/k_s , respectively), and $k_{11} = k_{22} = k_{ex}^0$, the rate constant for the *hypothetical* exchange reaction involving remote at-

tack of Cr²⁺ on CrSCN²⁺ to give CrNCS²⁺ and Cr²⁺ (or vice versa) with zero free energy change. We thus obtain $k_{ex}^{0} = k_{12}K_{12}^{-1/2} = 4 \times 10^{-2} M^{-1} \text{ sec}^{-1}$. Comparison of k_{ex}^0 with k_n shows that for zero free energy change, remote attack on thiocyanate is approximately 10³ times more favorable than adjacent attack. It is noteworthy that k^{0}_{ex} is smaller than the rate constant for the $CrN_3^{2+}-Cr^{2+}$ reaction (6.1 M^{-1} \sec^{-1} at 25.0°).⁴⁰ This suggests that the azide-bridged reaction is faster than the thiocyanate-bridged reaction even after allowance is made for the difference in the standard free energy changes of the reactions. In other words, this comparison suggests that, in the chromium(II)-chromium(III) system, azide is a better bridging ligand than a "symmetrized" thiocyanate group. The above argument also implies that remote attack of chromium(II) on CrN₃²⁺ is about 10³ times more favorable than adjacent attack.

An acid-dependent path similar to the one found in the $CrSCN^{2+}-Cr^{2+}$ reaction


$$Cr(SCN)OH^+ + Cr^{2+} \longrightarrow Cr^{2+} + Cr(NCS)OH^+$$
 (16)

has not been observed in other $CrX^{2+}-Cr^{2+}$ exchanges.^{4,40} The rapid rate of reaction 16 ($k > 2 \times 10^4 M^{-1} \sec^{-1}$ if $K_{h'}$ is greater than the hydrolysis constant of $Cr(H_2O)_6^{3+19}$ indicates a large effect of hydroxide as a nonbridging ligand or, more likely, perhaps, a double-bridged (hydroxide and thiocyanate) transition state. A double-bridged transition state, with hydroxide as one of the bridging groups, has been proposed for the *cis*-Co(NH₃)₄OH(OAc)⁺-Cr(II) reaction.⁴¹

Aquation and Isomerization of $CrSCN^{2+}$. The rates of aquation of CrX^{2+} complexes decrease in the order I⁻²² > SCN⁻ > Br⁻⁴² > Cl⁻²² > NCS^{-,19} Azide and fluoride are not included in this series since there is some evidence that CrN_3^{2+} and CrF^{2+} dissociate into $CrOH^{2+}$ and HN_3 , and $CrOH^{2+}$ and HF, respectively.^{22,24,43} As expected from Pearson's theory⁴⁴ the complexes formed between the hard acid chromium(III) and the soft bases I⁻ and SCN⁻ are not very stable and dissociate relatively rapidly. The above order of the ligands is similar to the spectrochemical series I⁻ > $Br^- \sim SCN^- > Cl^- > NCS^-$ and suggests that, in these systems at least, the same factors are important in determining the order of the ligands.

The rate of isomerization of $CrSCN^{2+}$ is comparable to its rate of aquation. For the isomerization to occur it is necessary that the chromium-nitrogen bond be formed before the thiocyanate leaves the sphere of influence of the chromium(III). Some mechanisms satisfying this requirement will next be considered.

(a) Intramolecular Isomerization. In this case the isomerization proceeds *via* a seven-coordinated transition state

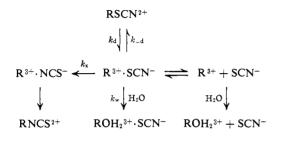
 $(H_2O)_5 CrNCS^{2+}$

⁽³⁸⁾ R. J. Campion, T. J. Conocchioli, and N. Sutin, J. Am. Chem. Soc., 86, 4591 (1964).

⁽³⁹⁾ The rates of a large number of outer-sphere electron-transfer reactions have been successfully correlated by means of this expression. See, for example, R. J. Campion, N. Purdie, and N. Sutin, *Inorg. Chem.*, 3, 1091 (1964). The validity of this expression as applied to innersphere reactions has not yet been established.

⁽⁴⁰⁾ R. Snellgrove and E. L. King, Inorg. Chem., 3, 288 (1964).

⁽⁴¹⁾ K. D. Kopple and R. R. Miller, Proc. Chem. Soc., 306 (1962).


⁽⁴²⁾ F. A. Guthrie and E. L. King, Inorg. Chem., 3, 916 (1964).

⁽⁴³⁾ D. Seewald and N. Sutin, *ibid.*, 2, 643 (1963).

⁽⁴⁴⁾ R. G. Pearson, J. Am. Chem. Soc., 85, 3533 (1963).

A similar transition state has been proposed for the isomerization of nitritopentaamminecobalt(III). 45, 46 This mechanism, although reasonable in the nitrito case, is not likely in the thiocyanate system because of the prohibitive amount of energy required to bend the linear thiocyanate group. On the other hand, a sevencoordinated transition state, in which an entering water molecule assists the removal of thiocyanate, cannot be ruled out for the aquation of CrSCN²⁺. A solventassisted dissociation has been proposed for the aquation of other complexes.⁴⁷

(b) Ion-Pair Mechanism. In this case a five-coordinated intermediate is formed. A reasonable mechanism of this type is

where R stands for $Cr(OH_2)_5$. If the dissociation of the ion pair into R³⁺ and SCN⁻ is relatively slow compared to the internal return of the ion pair, then, in the absence of added thiocyanate, $k_i = k_d k_x / (k_{-d} + k_x)$ (k_{w}) and $k_{a} = k_{d}k_{w}/(k_{-d} + k_{x} + k_{w})$. The assumption that the dissociation of the ion pair is relatively slow is supported by our observation that when the aquation-isomerization is carried out in the presence of 0.8 M Cl⁻ the yield of $Cr(OH_2)_5Cl^{2+}$ is appreciably less than the amount calculated from data on the

(45) R. K. Murmann and H. Taube, J. Am. Chem. Soc., 78, 4886 (1956). (46) R. G. Pearson, P. M. Henry, J. G. Bergman, and F. Basolo, *ibid.*, 76, 5920 (1954).

(47) R. G. Pearson and J. W. Moore, Inorg. Chem., 3, 1334 (1964).

competition of H₂O and Cl⁻ for Cr(OH₂)₅³⁺.⁴⁸ This type of mechanism, namely the formation of an ionpair intermediate which dissociates to only a small extent, has also been proposed for the isomerization of benzhydryl thiocyanate in acetonitrile.49-51

The ratio of the rates of aquation to isomerization is independent of acidity. This implies that the two ionpair intermediates $Cr(H_2O)_{5^{3+}}Cl^{-}$ and $Cr(H_2O)_{4^{-}}$ OH²⁺Cl⁻ are in rapid equilibrium or, more likely, that the branching ratios k_x/k_w are the same for the two intermediates.

The behavior of CrSCN²⁺ may be contrasted with that of CrNC²⁺. The isomerization of CrSCN²⁺, but not that of CrNC²⁺,⁶ is catalyzed by chromium(II). Moreover while the aquation and isomerization of Cr-SCN²⁺ proceed at similar rates, CrNC²⁺ undergoes only isomerization.6

Finally, other linkage isomers of thiocyanate have recently been reported. Palladium(II) forms Pd(As- $(C_6H_5)_3)_2(SCN)_2$ and Pd(bipy)(SCN)_2 as well as Pd- $(A_{5}(C_{6}H_{5})_{3})_{2}(NCS)_{2}$.⁵² Manganese forms the linkage isomers Mn(CO)₅SCN and Mn(CO)₅NCS⁵³ and there is evidence that cadmium forms sulfur-bonded and nitrogen-bonded thiocyanate complexes in solution.54-56 It is of interest that the rate of isomerization of Pd- $(As(C_6H_5)_3)_2(SCN)_2$ in chloroform solution is too rapid to be studied by conventional techniques.52

(48) M. Ardon, ibid., 4, 372 (1965).

(49) P. A. S. Smith and D. W. Emerson, J. Am. Chem. Soc., 82, 3076 (1960).

(50) A. Iliceto, A. Fava, U. Mazzucato, and O. Rossetto, ibid., 83, 2729 (1961).

(51) A. Fava, A. Iliceto, and A. Ceccon, Tetrahedron Letters, No. 11, 685 (1963).

(52) J. L. Burmeister and F. Basolo, Inorg. Chem., 3, 1587 (1964). (53) A. Wojcicki and M. F. Farona, 147th National Meeting of the American Chemical Society, Philadelphia, Pa., April 1964.

(54) A. Tramer, J. Chim. Phys., 59, 232 (1962).
(55) R. A. Plane, quote in ref. 52.
(56) O. W. Howarth, R. E. Richards, and L. M. Venanzi, J. Chem. Soc., 3335 (1964).